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A natural discretization scheme based on hexagonal finite elements is proposed 
for the numerical modeling of the tempemture fields of honeycomb stuctures. 

Schemes of the finite-element method (FEM), which are usually used in temperature-field 
calculations, are based on triangular and tetragonal finite elements (FE-3 and FE-4). The 
computational possibilities and approximational quality of these elements have been well 
studied and tested in numerous calculations [1-3]. In most cases, FE-3 and FE-4 are practi- 
cal and effective. However, there are problems in which hexagonal elements (FE-6) are more 
convenient and useful. These include structures with a fundamental structural division into 
regular hexagons: honeycomb structures, nuclear-reactor lattices, etc. In discretizing a 
region, hexagons may be divided into triangles (as is often done), but the direct FE-6 construc- 
tion is preferable, since this element, while ensuring sufficient accuracy, markedly reduces 
the volume of calculations. The discussion of modeling and the application of FE-6 is an ur- 
gent problem in light of the increasing interest of researchers in computational schemes with 
hexagonal cells. 

The plane region ~ is divided into a series of nonoverlapping subregions or elements: 
~i, ~=, -'', ~m, -.-, ~M, where ~m is a regular hexagon with vertices i, 2, ..., 6. All the 
elements interact through vertex-nodes I, 2, ..., N. The generalized harmonic equation is 
written in the following form for a single element [4] 
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with the boundary conditions 
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At each FE-6, the function u(x, y) is formed by interpolating u(x, y) with respect to the 
vertices ~m. Piecewise interpolation is determined by the equation u(x, y) = Um(X, y), 
(x, y) s 9an. The basis for determinng Um(X, y) consists of the local functions #i, #2, ..., 
#6, associated with vertices i, 2, ..., 6. This means that 
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where the coordinates Xk, Yk correspond to vertex k in ~m. Applying the Bubnov-Galerkin pro- 
cedure to Eq. (i) and distributing the elements over ensembles gives a system of resolving 
equations with block matrices A I .... , A m , ..., AM: 

_I_ I F I ! 
I --I ~'m 1 I 1 

I - - i -  - r - F - J  
I - - - - I - - - 7 - -  - t -  ~ ~ - - i  
L I I I i HMJ 

u, 

uz 
~ 

[P'] 

Ivano-Frankovskii Institute of Petroleum and Gas. Translated from Inzhenerno- 
Fizicheskii Zhurnal, Vol. 52, No. 2, pp. 301-305, February, 1987. Original article submitted 
February 26, 1986. 

230 0022-0841/87/5202-0230512.50 �9 1987 Plenum Publishing Corporation 



where 

T Am = K~-- x,um, K~ = ~ a ( r  + r %) dn, 
~ra 

g~m ~ m  S~ ' 

Note that the matrices K m and M m are symmetric, and the row matrix r = (r #2, .... r 
consists of basis functions. 

Construction of the basis is a key point in FE modeling. Consider this procedure for 
FE-6. Suppose that the FE-6 nodes are at the vertices (Fig. I). The traditional method 
[i, 2] of constructing the basis is to determine, for each vertex k, a six-parameter poly- 
nomial ~h(x, y) = ~ix 2 + ~2xy + ~y2~ ~x + ~5Y + ~G, solving the interpolation problem at hexagon 
~k(Xs Ys = 6ks (s = i, 2, .... 6). The parameters ~i are determined in terms of node 
values. Remembering that the basis function is 1 at "its" vertex, and vanishes at others, 
the following expression is written for k = i: 

where i = i, 6. The system obtained, however, does not have a solution, since its matrix is de- 
generate. This "singularity paradox" of FE-6 is associated with the axial symmetry of ver- 
tices of the element. There are various means of overcoming this deficiency of the traditional 
approach. The most effective and interesting new methods are those which eliminate the need 
to write and solve cumbersome systems of matrix-algebra equations. For example, local FE-6 
basis functions may be constructed by means of the R-function method [5, 6]. An analogous 
approach was described in [7-9]. 

Gonsider a method of simplified construction of the FE-6 basis. Suppose that ~m is a 
regular hexagon of unit side (the vertex numbers are circled in Fig. i). Begin with node i. 
In constructing the function ~l(x, y), use is made of a composition of the equations of sides 
2-3, 3-4, 4-5, and 5-6 such that this function vanishes at the points 2, 3 ..... 6. The 
equation ~i(xi, Yl) = i is attained by choice of an appropriate factor. The result obtained is 

1 y2 r y)=--~-(1 4Y2) [ (1-}-x)2-3 ~]" 
The other functions of the basis are obtained from el(x, y) by successive 60 ~ rotation. 
functions obtained, unlike the ordinary functions, do not satisfy the condition 

The 

(3) 
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ensuring interelement continuity. This deficiency of the basis is eliminated by normalization 
using an appropriate functional factor, which leads to a piecewise-rational function 

w1(x,y)=(1 4Y~)[(1+x)2--~l[2(3--x~--Y~)]-'3 
Note that the more complex structure of the normalized functions hinders the calculation of 
double integrals by FE-6 and this is not the only shortcoming of the piecewise-rational basis 
(PRB). An alternative to PRB is a polynomial basis (PB) constructed by an analogous method 
using a different composition of the lines passing through the FE-6 nodes. In this case, a 
quadratic parabola passing through nodes 2-4-6 and a straight line 3-5 is used in constructing 
#1(x, y). In contrast to PRB, the PB functions are normalized by means of a constant factor. 
The result obtained is 

~(x,  y) = ~ ( x - - 2 y ~ +  1)(2x + I). 
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Fig. i. FE-6 geometry and points of interpolation: 
interpolation are circled; 0 (center of hexagon), i, 
of integration. 
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2. Computational FE-6 isotherms: dashed curves) PRB approxima- 
continuous curves) PBapproximation. 

The other PB functions are obtained from #1(x, y) by 60 ~ rotation. Note that, despite the 
satisfaction of Eq. (3) at any point of FE-6, the PB has specific differences from PRB. Thus, 
whereas for PRB the behavior of the function in Eq. (2) on a side of FE-6 is determined solely 
by the two basis functions associated with this side, for PB all the basis functions make a 
nontrivial contribution to the behavior of this function on the side of FE-6. An individual 
PB function manifests (although very weakly) some unusual properties: for example, nonlinear- 
ity on the sides adjacent to "its" vertex and nonzero values on the opposite FE sides. How- 
ever, the properties of the individual function do not have undesirable consequences, since 
the mutually correcting influence of the basis functions completely eliminates any anomalies 
in the interpolated function. Thus, the two bases ensure C ~ Smoothness on a hexagonal lattice. 

As already noted, integration by FE-6 is a sufficiently complex and difficult operation. 
The computational procedure of [4] specially developed for "honeycomb" geometry is unsuitable 
for PRB. In this case, the Romberg integration method, based on Richardson extrapolation, 
must be used [4]. Completely satisfactory results of integration are obtained for both PB 
and PRB by means of a convenient 13-point quadrature formula specially constructed for FE-6 

y) m = a r y~ + = f ya .+  r (x,, yO,  (4) 

where the points of integration are chosen at the center (a), at the vertices (b), and in 
the middle of the sides (c) of the inscribed hexagon (Fig. i). 

Special test examples are considered to compare the interpolation quality of PB and PRB. 
Thus, in the problem of node-by-node localization of the heat generated in FE-6 by an internal 
source, accurate calculation of the integrals is accompanied by approximate calculation by 
Eq. (4). As would be expected, the node fractions are 1/6, regardless of the type of basis; 
the results of accurate and approximate integration are the same. It is interesting to com- 
pare the FE-6 temperature fields modeled on the basis of PRB and PB. Suppose that constant 
temperatures of 120 and 0~ are maintained on sides 2-3 and 5-6, respectively, and a tempera- 
ture of 60~ at points 1 and 4. Calculations show that the temperature distributions along 
the FE-6 boundaries are the same. However, inside the elements the temperature fields are 
not the same. These differences are illustrated by the calculational isotherms in Fig.2. There are 
grounds to suppose thatthe distorted PB isotherms are more correct. The dashed (PRB) isotherms do 
not reflect the FE-6 geometry, instead resembling the temperature field of tetragonal. Obvious- 
ly, with increase in the numDer of sides of the polygon inscribed in the circle, the iso- 
therms must tend to their limiting position, corresponding to the temperature field of a 
circular plate. Experience in using FEM shows that the passing to the limit does not always 
preserve the physical correctness of the solution obtained. It is enough to mention the 
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Sapondzhyan-Babushki paradox, which is well known in plate theory: in approximating a circular 
plate by means of regular polygons with freely supported edges, the limiting solution does not 
satisfy the conditions of free support at a circle [10]. 

In applying FEM, it is always important to remember the parasitic effects characteristic 
of the method: fictional solutions (nonphysical oscillations) and so-called engagement (an 
unreal increase in rigidity of the system). These effects largely affect the computational 
characteristics of FE and may distort seemingly ordinary calculations in the most unexpected 
manner. In this connection, it is difficult to overestimate the importance of preliminary 
testing of finite elements that have not been adequately studied. 

NOTATION 

u, temperature; h, thermal conductivity; p, internal-source (sink) function corresponding 
to an internal heat source (sink); lu, the same, but proportional to the temperature; u, 
temperature at boundary $I; q, heat flux at boundary $2; S = S I + $2, total boundary of the 
region; 0u/an, derivative with respect to the normal at the boundary; 6ii, Kronecker delta; 
mes ~, measure (area) of FE-6; f(xi, Yi) value of integrand at point of ~ntegration i (i = 0, 
I, 2, ..., 12). 
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